
A Study of Request-Routing in Content Delivery Networks
Shreeshrita Patnaik

University of Wisconsin-Madison
spatnaik2@wisc.edu

Arjun Kashyap
University of Wisconsin-Madison

akashyap3@wisc.edu

ABSTRACT
Content Delivery Networks (CDNs) have seen significant growth
and evolution, due to the huge amounts of online content, specifi-
cally media content being generated continuously. As the demand
for dynamic and streaming web content increases, it is important
to inspect the several modules that make up a CDN. This paper fo-
cuses on looking into request-routing algorithms and mechanisms,
and the role they play in Content Delivery, quantified by the use of
relevant metrics.

1 OVERVIEW
1.1 Motivation
CDNs, today comprise of several heterogeneous components and
mechanisms, each of which plays a role in delivering requested
content to end-user in a faster, reliable and more secure way. Of
all the blocks that make a CDN, we believe that request routing
plays a significant role in ensuring CDNs are able to deliver content
as guaranteed. Request-Routing is the process by which a client’s
request for content, gets routed to the specific surrogate server
hosting the content and with minimum cost, which is defined by
the use of several metrics. The ability to route a client request for
content to an edge server that is chosen, so as to minimise the delay
between request and response, would be an important factor in
terms of both commercial benefit to CDNs and the delivered user
experience.

A Request Routing comprises of two parts: the algorithm which
chooses the specific server that should serve the request, and the
mechanism which specifies how the request would be routed to
the server that the algorithm picks. There are several different algo-
rithms and mechanisms that exist today, in use by commercial CDN
providers and also small- scale web content providers. However, we
do not see a comprehensive comparison of these mechanisms and
algorithms, under varied network and congestion conditions. We
believe that an analysis of the widely used algorithms and mecha-
nisms, their implementations and their behaviour under network
loads or congested routes, would pave the way for a better un-
derstanding and selection of these mechanisms, according to the
dynamic network conditions.

1.2 Research Problem
To evaluate the efficiency and accuracy of request-routing al-
gorithms, subject to varied network conditions and discover
whether these algorithms truly choose the optimal edge server
to serve a client request.

2 RELATEDWORK
2.1 A Taxonomy and survey of content

delivery networks[1]
This paper serves as an entry point to the dynamic world of CDNs.
The paper provides a comprehensive survey of all the terminologies
and processes that make up a CDN. It provides a high-level overview
of the workings of the components of a CDN and the interaction
among them. It talks about: the architecture of a CDN, the various
types of servers, the protocols used for communication by caches
and network elements, about the concepts of replica placement,
request routing and also gives a brief overview of the industry
trends and popular Content Delivery Network providers at the
time, the paper was released.

2.2 A Walk through Content Delivery
Networks [2]

This paper also provides a high-level overview of the various com-
ponents of a CDN. It delves into more details about request-routing
algorithms. It talks about the implementation of a few request
routing mechanisms, and gives a process walkthrough. The most
significant takeaway of this paper were the sections on measure-
ment and metrics used for analysing a Request- Routing Algorithm.
It talks about the different types of measurement that we can use
during our study. It also lists various metrics we can use, like la-
tency, packet loss and network proximity. This paper, however does
not consist of any experimental methodology to compare or analyse
a request- routing mechanism.

2.3 Request-routing Trends and Techniques in
Content Distribution Networks [3]

This paper provides an in-detail description of various Request-
Routing solutions, like DNS-based, Transport-layer based, Application-
layer based and content-layer based Routing mechanisms , used
today is CDNs. It provides a more detailed outlook of the various
components in each mechanism. It, however, does not provide any
insight into the performance measure of any one .

2.4 Unreeling netflix: Understanding and
improving multi-CDN movie delivery [4]

This paper was valuable in understanding how to set up measure-
ment for analysing CDNs in use by a content provider like Netflix,
how to discover servers, how to manually override the server selec-
tion and details about CDNs used by content providers like Netflix.

2.5 CDN DNS - An Efficient DNS Request
Routing Technique in Content Delivery
Network [5]

This paper was useful in explaining some details about the exper-
imental methodology that can be set up to obtain an analysis of
certain request-routing mechanisms like DNS-redirection. It delves
into the selected mechanism, by both simulating an appropriate
environment and also analysing datasets from popular CDNs. It
also provides an insight into the effect of AS and network clustering
on latency.

2.6 Drafting Behind Akamai: Inferring
Network Conditions Based on CDN
Redirections [6]

This paper introduces us to the measurement methodology of Aka-
mai redirection mechanisms but does not speak about analyzing
the request routing algorithms. It highlights the idea of how request
routing mechanisms and algorithms depend on network conditions
and server loads.

3 PROPOSED APPROACH AND CHALLENGES
3.1 Choosing a content provider that uses one

or more CDNs
In order to start our study of comparing request routing algorithms
being deployed today, and their performance measure, we need to
choose a content provider which uses one or mode CDNs to host
their content. For instance Netflix uses at least 3 CDNs: Akamai,
LimeLight and Level-3[5]

3.2 Discovering Edge Servers
The next logical step would be to discover the edge server, which
the request routing algorithm shall choose, where the server is
placed (in terms of network proximity and AS no.) and the other
servers present, that the request routing algorithm may bypass.
There are a few tools to accomplish this, the simplest of which
would be a nslookup, that can give us the identities of a couple of
servers.

Challenge 1: A challenge in our proposed step, would be to
find a way via which we can discover all the other edge servers
that the content provider uses to host their content and how we
can identify them. If we want to figure out the servers distributed
across the world, one possible step as cited in [5]. would be to host
VMs in the cloud-providers across geographic locations and send a
GET request from these servers. We hope to find a simpler way to
complete this step.

3.3 Finding which request routing algorithm a
CDN uses

To map a CDN’s performance to a request routing algorithm, we
need to figure out which request routing algorithm is being used
by a CDN. There may be several approaches to it.

3.3.1 Literature Review and white papers: We intend to look at
publications and white papers that address or refer to the request
routing algorithm in use by a CDN

3.3.2 Analyse headers: The best way to validate a request-routing
mechanism would be deciphering the packet format sent back by
the chosen server. We need to figure out if we can look at the pack-
ets and map it to a certain request-routing algorithm. This is also
Challenge 2.

3.4 Starting data transfer and Observation
In this step we would need to start the data transfer and observe
the server that gets chosen at different points in time during our
project, measuring performance in terms of delay or latency be-
tween request and response and the throughput of the transfer.

Challenge 3: A challenge in this step would be to validate if
the proposed metrics are a good measure of the performance of a
request routing algorithm.

Challenge 4: Another challenge in this step would be breaking
down the response time into factors accounting for: (1) the time
taken for the redirection mechanism to choose a server based on
its algorithm and the mechanism to deliver the server address and
(2): the actual round trip time that is indicative of the server load
and path congestion or throttled bandwidth.

Perhaps, a comparative study of the behaviour may help isolate
the components. We can vary or manipulate the conditions by: (1)
throttling bandwidth manually or by even (2) overriding the edge
server selection.

3.5 Overriding Edge Server Selection
We would like to, in the course of our project, be able to manually
override the edge server selection to choose a different edge server
and verify if indeed the decision reached by the request routing
algorithm, was indeed justified.

Challenge 5: To figure out how to manually override the edge
server selection.

[5] talks of a way to trick the servers by modifying the HTTP
host header.

3.6 Analyse Gathered Data
The tentative last step in our project would be to analyse all the data
we’ve gathered and understand the performance of the selected
request routing algorithms and the variance in behaviour under
different network conditions.

4 METHODOLOGY
In order to understand and evaluate the request routing algorithms
implemented by leading content providers, we needed to gather
data that would be pertinent in decoding the efficacy and utilization
of the algorithms. From the data collected we could observe the
trends and analyze them. In order to do so, we followed a series
of steps, ranging from experimental setup, to data collection and
analysis.

4.1 Choosing a content provider
In order to begin data collection, we needed to zero in on one con-
tent provider, which in turn relied heavily on CDNs. Several content
providers leverage multiple content delivery networks, both for
redundancy and cost-effectiveness [2]. After careful consideration
of a few choices of content providers including Netflix, Hulu, and

2

Adobe, we found analyzing Hulu to be the best choice. This choice
was based on factors including a moderate number of servers from
multiple different CDNs, impact and direction provided by related
work we sampled and lastly, the monetary cost of membership of
the content provider.

According to comscore, a media company, Hulu occupies the
third place in leading video subscription services in the United
States, by number of subscribers. Hulu leverages 3 content delivery
networks: Akamai, Level 3 and Edgecast. Akamai primarily hosts
the static content, specifically js(javascript) objects that are most
frequently used, while Level3 and Edgecast are used to host the
media content in mp3 and mp4 formats.

4.2 Choosing Edge Servers
Discovering edge servers was the next step in our proposed ap-
proach, and determining the edge server that the request routing
algorithm chooses at the moment and the other proxy servers that
could be potential alternate choices. We had here posed the first
challenge that we expected to face in terms of carrying out our
requests in a distributed fashion from multiple locations so as to
determine the maximum subset of edge servers. We had envisioned
that the process would deal with deploying our script containing the
http requests on VMs at multiple geographic locations. To achieve
this, we considered several options. The two most viable options
were using PlanetLab [7] Nodes and using the WebPageTest [8]
tool.

We chose WebPageTest as the primary instrument for data col-
lection for the following reasons:

(1) Ease of use: The process of using WebPageTest appeared to
be simpler, in the sense that there was no extra processes
required to add locations or set up any other infrastructure.

(2) APIs: Since we were planning to undertake repeated tests
(to avoid skewness of results), from multiple locations, with
different objects at different points of time, the APIs exposed
were helpful in automating the tasks.

(3) Variety of metrics: The most important reason behind our
choice of WebPageTest was its ability to return data in terms
of a variety of metrics including Time-to-First-Byte (TTFB),
DNS lookup time, server round-trip times, etc.

We then use several of our python scripts to leverage Web-
PageTest API’s for data collection. WebPageTest was originally
developed by AOL for internal use. It is open sourced under a BSD
license. The platform consists of a web UI using PHP and an agent
that runs tests on browsers at different locations across the world.
The main agent is named wptdriver and supports multiple browsers.
The main components of the file are:

(1) Thewptdriver : This is themain executable that gets launched
on receiving a request. It a) polls the server forwork, b)launches
the browse, c) injects the scripts or issues the URL request,
d) reports the metrics, and e) updates as required

(2) Wpthook: This is the main code that gets injected into the
browser, mimics the actions required to request a web page
or an object. It runs on port 8888.

(3) Wptwatchdog, wptglobal and wptupdate are the other com-
ponents

4.3 Finding which request routing algorithm a
CDN uses

Request routing algorithms are proprietary and hence cannot be
determined by just measurement.

4.4 Starting data transfer and Observation
• After determining WebPageTest as our instrument of data
collection, we wrote several python scripts that took as input
a) the URL of the web object that we wanted to fetch from
the servers, b) the location from which we wanted to fetch
the object and c) the metrics we wanted to extract like TTFB
and DNS lookup time.

• One of the significant challenges we faced, during the pro-
cess of data collection was dealing with unauthorized ac-
cess. When we deploy our scripts from browsers at different
locations of the world, we needed a way to also pass our
authentication parameters, so that we could avoid receiving
HTTP error code 403 (forbidden). Hence, to also pass on our
credentials, we used two approaches.

(1) Appending session token to the URL: We used this ap-
proach for collecting audio data, since the range of bytes of
audio are hosted on servers whose only means of authen-
tication is comparing the authentication tokens received
from the customer and the content provider. However, we
observed that the session keys expired after a certain time
period (in hours).

(2) Injecting Java Script with login and password details.

• We collected the IP addresses of the edge servers by request-
ing either audio or static content along with TTFB times.

• Once we had the list of servers, we needed to determine
if the request routing algorithm was efficiently choosing
the correct edge server, based on the minimum TTFB time
which represented network proximity, network conditions
and server load. To do so, we needed to first determine if the
returned edge server’s TTFB was indeed optimal.

• The next step in the order of things, was to force our request
to fetch data from all servers, instead of just one and note
their respective times. To do so, we injected another Java
Script, that would override the Domain Name System map-
ping for the domain name to the IP address specified by us.
We repeated the process for all the servers in each of our
lists.

• We then obtained the optimal server for each location based
on minimum TTFB times. The final step was compare the
difference between the server chosen by the request routing
algorithm and the optimal server observed, and to analyze
the trends observed in the data.

5 DATA COLLECTED
We had automated the task of fetching data from the following
locations in Europe and locations in North and South America over
several time periods in a day:

• Europe: Amsterdam, Berlin, Falkenstein, gce-europe, Italy,
London, Maidenhead, Poland, Prague, Spain, Stockholm and
Strasburg.

3

• America: Argentina, Chicago, Colorado, Dulles, ec2-sa-east-
1, ec2-us-east1, ec2-us-west1, Florida, gce-us-west1-linux,
MinasGerais, Nebraska, New Jersey and Texas.

After several runs of our scripts, we were able to collate or data
into server lists, one each for Akamai and Level-3, for static and
audio content respectively:

• Akamai, America
• Akamai, Europe
• Level 3, America
• Level3, Europe

We discovered 11 Level 3 and 11 Akamai edge servers in Europe.
And 15 Level 3 and 19 Akamai edge servers in North and South
America.

6 RESULTS
Analysis of the collected data was based on the metric : Time to
First Byte (TTFB). TTFB is the time spent waiting for the initial
response. This time captures the latency of a round trip to the
server in addition to the time spent waiting for the server to deliver
the response [4]. We think that the TTFB is a good metric to use,
given that it depends on the round trip time indicating network
conditions and server response which indicates the server load.
Both these factors are important to the request routing algorithm
in choosing an appropriate edge server.

Another important note is that we were unable to trace ping
times, since our Internet Control Message Protocol (ICMP) packets
were dropped indicating some sort of access-control by the content
delivery networks.

After running our script several times, we observed that the
below set of server’s in Figure 1 and Figure 4 remained mostly
constant, indicating the set represented a good estimate of Level
3’s servers being used by Hulu. We then sketched a bar plot (Figure
2) and a line plot (Figure 3) for Level 3 CDN which hosted audio
objects in Europe.

Figure 1: Table containing locations in Europe, the edge
server IP address chosen by the RR algorithm, its TTFB, the
optimal edge server observed, and its corresponding TTFB
for the audio object

We also sketched a bar plot (Figure 5) and line plot (Figure 6) for
Level 3 CDN which hosted audio objects in America.

Figure 2: Bar Plot for an audio object using a Level 3 CDN for
locations across Europe. The blue trace represents overrid-
ing the DNS and finding the optimal server with minimum
TTFB. The orange trace represents the actual server TTFB
(that is the server chosen by the request routing algorithm).
The green trace is the average of all the TTFBs obtained by
DNS override.

Figure 3: Line Plot for an audio object using a Level-3 CDN
for locations across Europe. The blue trace represents over-
riding the DNS and finding the optimal server with mini-
mum TTFB. The orange trace represents the actual server
TTFB (that is the server chosen by the request routing algo-
rithm). The green trace is the average of all the TTFBs ob-
tained by DNS override.

Similar data was collected for a javascript file (static content)
which is present in the homepage of Hulu. We repeated our ex-
periments with this web object and obtained a list of servers and
sketched bar and line plots for both Europe and America. Figure
7 and Figure 10 represents the IP addresses of the edge servers
in Europe and America respectively. Figures 8, 9, 11, 12 represent
the various bar and line plots for static objects across Europe and
America.

Following is the analysis for Level 3 CDN request routing:

• Level 3 CDN’s request routing algorithm does not have a
good match with the optimal server. For Europe, the match
rate is 0, while in America the average match rate is <50%.

4

Figure 4: Table containing locations in America, the edge
server IP address chosen by the RR algorithm, its TTFB, the
optimal edge server observed, and its corresponding TTFB
for the audio object

Figure 5: Bar Plot for an audio object using a Level 3 CDN for
locations across America. The blue trace represents overrid-
ing the DNS and finding the optimal server with minimum
TTFB. The orange trace represents the actual server TTFB
(that is the server chosen by the request routing algorithm).
The green trace is the average of all the TTFBs obtained by
DNS override.

The redirection, we guess maybe based on network proxim-
ity, rather than a combination of network conditions, prox-
imity and server load.

• There is a high variation in the TTFB times among locations
in America, and less variation in TTFB times among locations
in Europe.

• Although the chosen server may not be optimum, it has
better TTFB than the average over all other locations.

Following is the analysis for Akamai CDN request routing:
• Akamai’s request routing algorithm had amuch better match
rate as compared to Level 3. The mismatch rate was always
< 30%, ranging around 25%, with the mismatch seen over
fixed locations only.

• Similar to Level 3 CDN if there was a mismatch, the TTFB
time was still much better than the average rate.

• Aswe ran the experiment several times, we found that unlike
Level 3, Akamai frequently updated its choice of edge server.

Figure 6: Line Plot for an audio object using a Level 3 CDN
for locations across America. The blue trace represents over-
riding the DNS and finding the optimal server with mini-
mum TTFB. The orange trace represents the actual server
TTFB (that is the server chosen by the request routing algo-
rithm). The green trace is the average of all the TTFBs ob-
tained by DNS override.

Figure 7: Table containing locations in Europe, the edge
server IP address chosen by the request routing algorithm,
its TTFB, the optimal edge server observed, and its corre-
sponding TTFB for the Static Object.

This leads us to believe that the change may have been due
to changing network conditions which is again correctly
reflected in the TTFB times. We also observed a variation
in TTFB times with respect to different times of the day.
Analyzing this trend and verifying optimal request routing
utilization at different points of a day could indicate user
behavior and a CDN’s efficiency. This could studied more in
the future.

7 FUTUREWORK
• Although we believe that the TTFB was a significant metric
in estimation of an optimal server, we believe that using
additional metrics (like download complete time, which may
also be indicative of a server’s capabilities) and modeling the
effect of these metrics, would help us choose an uncontested
optimal server.

5

Figure 8: Bar Plot for a static object using a Akamai CDN for
locations across Europe. The blue trace represents overrid-
ing the DNS and finding the optimal server with minimum
TTFB. The orange trace represents the actual server TTFB
(that is the server chosen by the request routing algorithm).
The green trace is the average of all the TTFBs obtained by
DNS override.

Figure 9: Line Plot for a static object using aAkamai CDN for
locations across Europe. The blue trace represents overrid-
ing the DNS and finding the optimal server with minimum
TTFB. The orange trace represents the actual server TTFB
(that is the server chosen by the request routing algorithm).
The green trace is the average of all the TTFBs obtained by
DNS override.

• We would also like to have analyzed the trends of user be-
haviour and its effects on optimal CDN utilization.

• Lastly, we were extremely fascinated with the key exchange
mechanism between the three parties involved: the content
provider, the content delivery network and the user, and
how these affect Digital Rights Management in an increasing
video-on-demand world.

8 SUMMARY
The implications of the above analysis to the question posed by us
at the start of the paper are as follows:

• Given that the number of internet users who watch video
is growing at a rapid rate, and the quality of experience
of an user is affected by slower page loads, delay in video

Figure 10: Table containing locations in America, the edge
server IP address chosen by the request routing algorithm,
its TTFB, the optimal edge server observed, and its corre-
sponding TTFB for the static object.

Figure 11: Bar Plot for an static object using a Akamai CDN
for locations across America. The blue trace represents over-
riding the DNS and finding the optimal server with mini-
mum TTFB. The orange trace represents the actual server
TTFB (that is the server chosen by the request routing algo-
rithm). The green trace is the average of all the TTFBs ob-
tained by DNS override.

starts and interruptions, it becomes imperative for content
providers to provide a seamless experience to the users and
content delivery networks play a pivotal role in this [4]. We
have analyzed a couple of content providers and the trend is
to use multiple content delivery networks for data hosting
and distribution.

• From our analysis of two content delivery networks we ob-
served that Akamai’s request routing algorithm performed
significantly better than Level 3’s in relation to Hulu’s con-
tent.
– Akamai’s low mismatch rate indicates to us that Akamai
must be using an adaptive algorithm that takes as parame-
ters, network proximity (path length), network conditions
and server load (client-server latency). Akamai also uses
DNS-redirection based request routing, but since the DNS
time for redirect would be similar for a particular VM, we
can say that our data is free from DNS time bias.

6

Figure 12: Line Plot for a static object using a Akamai CDN
for locations across America. The blue trace represents over-
riding the DNS and finding the optimal server with mini-
mum TTFB. The orange trace represents the actual server
TTFB (that is the server chosen by the request routing algo-
rithm). The green trace is the average of all the TTFBs ob-
tained by DNS override.

– Level 3 does not effectively track changes in network con-
ditions. In fact, as per our observation, for each video we
played, for the entire duration of the period, the choice
of the edge server did not change once it had been ini-
tialized. This tells us that Level 3 must be using either a
non-adaptive request routing algorithm (based on a simple
round-robin mechanism) or an adaptive algorithm that
simply considers path length as the only metric.

• Skewness of data: In Spite of our attempt to avoid any sort of
skewness of the data, we have to note the fact that for some
locations, there were test queues, in which there may have
been certain amount of delay between the time at which the
edge server was chosen by the request routing algorithms
and the time at which our request was sent to the other
servers in the list. However, even for the busiest places on
our list, the window was less than 20 minutes.

REFERENCES
[1] Al-Mukaddim Khan Pathan and Raj Kumar Buyya , “A Taxonomy and survey of

content delivery networks”, in Content Delivery Networks, Chapter 2, Springer
Press, ISBN 978-3-540- 77886-8.

[2] Bartolini N., Casalicchio E., Tucci S. (2004) AWalk through Content Delivery Net-
works. In: Calzarossa M.C., Gelenbe E. (eds) Performance Tools and Applications
to Networked Systems. MASCOTS 2003. Lecture Notes in Computer Science, vol
2965. Springer, Berlin, Heidelberg

[3] Md. Humayun Kabir, E. G. Manning, G. C. Shoja, Request-routing Trends and
Techniques in Content Distribution Networks, International Conference on Com-
puter and Information Technology (ICCIT), , 315-320, 2002.

[4] V. K. Adhikari et al., "Unreeling netflix: Understanding and improving multi-
CDN movie delivery," 2012 Proceedings IEEE INFOCOM, Orlando, FL, 2012, pp.
1620-1628. doi: 10.1109/INFCOM.2012.6195531

[5] Sandeep Kath, Manoj Kumar and Ajay Sharma, “CDN DNS - An Efficient DNS
Request Routing Technique in Content Delivery Networks” International Journal
in Advances in Computational Sciences and Technology , ISSN 0973-6107 Vol 3
Number 2 (2010) pp. 147-154.

[6] A.-J. Su, D. R. Choffnes, A. Kuzmanovic, and F. E. Bustamante,“Drafting behind
Akamai: Inferring network conditions based on CDN redirections,” IEEE/ACM
Trans. Netw., vol. 17, no. 6, pp. 1752–1765, Dec. 2009.

[7] PlanetLab, An open platform for developing, deploying and accessing planetary
scale services.

[8] WebPageTest, Website Performance and Optimization Test.

7

https://www.planet-lab.org/
https://www.webpagetest.org/

	Abstract
	1 Overview
	1.1 Motivation
	1.2 Research Problem

	2 Related Work
	2.1 A Taxonomy and survey of content delivery networksc1
	2.2 A Walk through Content Delivery Networks c2
	2.3 Request-routing Trends and Techniques in Content Distribution Networks c3
	2.4 Unreeling netflix: Understanding and improving multi-CDN movie delivery c4
	2.5 CDN DNS - An Efficient DNS Request Routing Technique in Content Delivery Network c5
	2.6 Drafting Behind Akamai: Inferring Network Conditions Based on CDN Redirections c6

	3 Proposed Approach and Challenges
	3.1 Choosing a content provider that uses one or more CDNs
	3.2 Discovering Edge Servers
	3.3 Finding which request routing algorithm a CDN uses
	3.4 Starting data transfer and Observation
	3.5 Overriding Edge Server Selection
	3.6 Analyse Gathered Data

	4 Methodology
	4.1 Choosing a content provider
	4.2 Choosing Edge Servers
	4.3 Finding which request routing algorithm a CDN uses
	4.4 Starting data transfer and Observation

	5 Data Collected
	6 Results
	7 Future Work
	8 Summary
	References

